Cvičení:
Homogenní a nehomogenní soustavy lineárních rovnic

(a) \[
\begin{align*}
 x - 2y &= 1 \\
 3x + 2y &= -3
\end{align*}
\]
\[
\{[-\frac{1}{2}, -\frac{3}{4}]\}
\]

(b) \[
\begin{align*}
 2x + y + 3z &= 1 \\
 x + 4y - 2z &= -3
\end{align*}
\]
\[
\{[1 - 2t, -1 + t, t]\}
\]

(c) \[
\begin{align*}
 x + y - 2z &= -3 \\
 2x - y + 3z &= 7 \\
 x - 2y + 5z &= 1
\end{align*}
\]
\[
\{\} \quad \text{(d) } x - 2y + z = 6 \\
\begin{align*}
 2x + y - 3z &= -3 \\
 x - 3y + 3z &= 10
\end{align*}
\]
\[
\{[1, -2, 1]\}
\]

(e) \[
\begin{align*}
 x - 2y + 2z - w &= 3 \\
 3x + y + 6z + 11w &= 16 \\
 2x - y + 4z + w &= 9
\end{align*}
\]
\[
\{[5 - 2t, 1, t, 0]\}\quad \text{(f) } 3x - 2y + z = 4 \\
\begin{align*}
 x + 3y - 4z &= -3 \\
 2x - 3y + 5z &= 7 \\
 x - 8y + 9z &= 10
\end{align*}
\]
\[
\{[1, 0, 1]\}\]

(g) \[
\begin{align*}
 2x - 6y + 4z &= 2 \\
 -x + 3y - 2z &= -1
\end{align*}
\]
\[
\{[1 + 3s - 2t, s, t]\}\quad \text{(h) } 2x + 2y + 3z = 1 \\
\begin{align*}
 y + 2z &= 3 \\
 4x + 5y + 7z &= 15
\end{align*}
\]
\[
\{[-\frac{15}{2}, 23, -10]\}\]
2. Řešte soustavy lineárních rovnic, které jsou dány následujícími rozšířenými maticemi. U každé soustavy určete dimenzi prostoru jejích řešení a bázi (vektorového) prostoru řešení příslušné homogenní soustavy.

\[
\begin{bmatrix}
4 & 3 & 2 & 1 \\
1 & 3 & 5 & 1 \\
3 & 6 & 9 & 2
\end{bmatrix},
\begin{bmatrix}
1 & 2 & 3 & -1 \\
-3 & -6 & -7 & 7 \\
2 & 4 & 7 & 0
\end{bmatrix},
\begin{bmatrix}
1 & -2 & 3 & -4 & 4 \\
0 & 1 & -1 & 1 & -3 \\
1 & 3 & 0 & -3 & 1 \\
0 & -7 & 3 & 1 & -3
\end{bmatrix},
\begin{bmatrix}
1 & 3 & 2 & 2 \\
2 & -1 & 3 & 7 \\
3 & -5 & 4 & 12 \\
1 & 17 & 4 & -4
\end{bmatrix},
\begin{bmatrix}
1 & 2 & -1 & 3 & 1 \\
-3 & -6 & 5 & -10 & -1 \\
2 & 4 & 0 & 5 & 4 \\
1 & 2 & 1 & 2 & 3
\end{bmatrix},
\begin{bmatrix}
1 & -2 & 4 & -5 & 1 \\
2 & -3 & 5 & -7 & 3 \\
2 & -2 & 2 & -3 & 7 \\
3 & -4 & 6 & -10 & 2
\end{bmatrix}
\]
(g) \[
\begin{bmatrix}
2 & -6 & 4 \\
-1 & 3 & -2 \\
\end{bmatrix}
\] , (h) \[
\begin{bmatrix}
1 & 1 & 1 & 9 \\
0 & 1 & 2 & 8 \\
-3 & 0 & 1 & -7 \\
\end{bmatrix}
\].

ŘEŠENÍ: (a) \([t, \frac{1}{3} - 2t, t]\), (b) \([-7 - 2t, t, 2]\), (c) \([-8, 4 + t, 8 + 2t, 1 + t]\), (d) \([-3 - 11t, -1 - t, 4 + 7t]\), (e) \([2 - 2s - 5t, s, 1 + t, 2t]\), (f) \([2t, -8 + 3t, t, 3]\), (g) \([1 + 3s - 2t, s, t]\), (h) \([-5 - 3t, 19 - 4t, -6 - 2t, t]\).

3. Určete množiny bodů, které jsou společné rovinám \(\alpha, \beta, \gamma\), které jsou dány obecnými rovnicemi:

\begin{enumerate}
 \item[(a)] \(\alpha: 3x + y - z - 7 = 0\)
 \(\beta: x + 2y - 5z - 15 = 0\)
 \(\gamma: 3x + 5y + 2z - 9 = 0\),
 \item[(b)] \(\alpha: x + y + z - 5 = 0\)
 \(\beta: 3x - 2y + z - 3 = 0\)
 \(\gamma: 4x - y + 2z - 10 = 0\),
 \item[(c)] \(\alpha: x + 2y + z - 1 = 0\)
 \(\beta: 3x - z - 6 = 0\)
 \(\gamma: 7x - 4y - 5z - 16 = 0\),
 \item[(d)] \(\alpha: x - 2y + z - 1 = 0\)
 \(\beta: 2x - 4y + 2z - 2 = 0\)
 \(\gamma: -5x + 10y - 5z + 5 = 0\).
\end{enumerate}