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(IN)EQUALITIES IN A TRIANGLE PROVED BY SYNTHETIC WAY 

JIŘÍ BLAŽEK 

 ABSTRACT. There are many (in)equalities between elements of a triangle, whose 
justification is in the realm of high school mathematics. The most common procedure 
of their proofs is based on manipulation of trigonometric functions, like sum and 
difference formulas. In the article we show how some of the (in)equalities is possible 
to prove synthetically – by means of geometry and without trigonometric 
manipulation.  

INTRODUCTION 

There are many (in)equalities between elements of a triangle. Many of them is possible to justify 
in the realm of high school mathematics and some occur in Mathematical Olympiads. The most 
common way of their justifications is based on manipulation of trigonometric functions. We 
denote such approach as algebraic (manipulation with symbols according to given rules). This 
approach has a drawback: it requires experience in the treatment with often complex 
relationships and perfect knowledge of sum and difference formulas of trigonometric functions. 
It is known that many of the (in)equalities is possible to reduce to a concrete geometric property 
of a general triangle, which can be proved in a complete synthetic way. This approach of 
justification we denote as ‘geometric‘. Its advantage is elegance, straightforwardness, and gain 
of better understanding. 

It is obvious that there is no clear cut between ‘algebraic’ and ‘geometric’ approach in solving 
(in)equalities. For example, the sum and difference formula may be proved in a synthetic way. 
Despite it, there is a difference if a student proves (in)equality of a triangle as a consequence of 
its geometrical property or by long manipulation of trigonometric formulas. We define 
‘algebraic’ approach as a method requiring sum or difference formulas or various inequalities 
(such as A-G inequality, Cauchy inequality, or rearrangement of an expression to the sum of 
squares). If we solve an (in)equality in a synthetic way, based on relationship between elements 
of a triangle, we denote this approach as ‘geometric’. Let’s show an example, illuminating the 
difference between algebraic and geometric approach. 

 
Prove that in an arbitrary triangle 

sin𝛼𝛼 + sin𝛽𝛽 > sin 𝛾𝛾. 
Algebraic solution: 
We will consequently rearrange the inequality 

sin𝛼𝛼 + sin𝛽𝛽 > sin(180° − 𝛼𝛼 − 𝛽𝛽), 
sin𝛼𝛼 + sin𝛽𝛽 > sin(𝛼𝛼 + 𝛽𝛽), 

2 sin
𝛼𝛼 + 𝛽𝛽

2
cos

𝛼𝛼 − 𝛽𝛽
2

> 2 sin
𝛼𝛼 + 𝛽𝛽

2
cos

𝛼𝛼 + 𝛽𝛽
2

, 

cos
𝛼𝛼 − 𝛽𝛽

2
> cos

𝛼𝛼 + 𝛽𝛽
2

. 

 
Received by the editors: 15.02.2021. 
2020 Mathematics Subject Classification: 97G40. 
Key words and phrases: Triangle, inequality, synthetic geometry, proof, mathematics teaching. 



2 JIŘÍ BLAŽEK 

The last inequality is evident, since the cosine function is even and in interval (0,90°) 
decreasing. Because all steps of the rearrangement of the inequality are reversible, the proof of 
the inequality is done. 

Geometric solution: 
We multiply the supposed inequality by a positive number 2𝑅𝑅, which denotes the diameter 

of the circumscribed circle of a triangle with angles 𝛼𝛼, 𝛽𝛽, 𝛾𝛾. We get 
 

2𝑅𝑅 sin𝛼𝛼 + 2𝑅𝑅 sin𝛽𝛽 > 2𝑅𝑅 sin 𝛾𝛾. 
But it is easy to show that 

2𝑅𝑅 sin𝛼𝛼 = 𝑎𝑎,    2𝑅𝑅 sin𝛽𝛽 = 𝑏𝑏,    2𝑅𝑅 sin 𝛾𝛾 = 𝑐𝑐, 
so we arrived at the triangle inequality theorem 

𝑎𝑎 + 𝑏𝑏 > 𝑐𝑐. 
Again, all steps are reversible and the inequality is proved. 
 
 
In this article, eleven problems dealing with (in)equalities of a triangle are stated. The 

problems were chosen according to criterion whether the author was able to prove them by 
a geometric approach or not. As it was already stated, the aim of the article is to avoid a 
manipulation of trigonometric functions during a solution of a problem, like sum or difference 
formulas. There is a drawback of this approach as the solver must have more extensive 
knowledge enabling him to interpret an abstract (in)equality as a concrete property of a triangle. 

We will start with some most common relationships between elements of a triangle with an 
outline of their proof. The problems are followed with their solutions. It is recommended to the 
reader to think about the problems before reading the solution. 

All inequalities used in this article are well known. The main inspiration for writing the article 
was the book [1]. Although some problems in this article were adopted from that book, their 
solutions presented here are different.  

The article is mainly addressed to teachers of mathematics and high school students interested 
in mathematics. 
 
 
 

1. SOME RELATIONS BETWEEN ELEMENTS OF A TRIANGLE 

Firstly, we summarize a typical notation concerning elements of a triangle 𝐴𝐴𝐴𝐴𝐴𝐴: 
𝛼𝛼,𝛽𝛽, 𝛾𝛾 − angles at the vertices 𝐴𝐴,𝐴𝐴,𝐴𝐴 
𝑅𝑅,𝜌𝜌 − radius of circumscribed / inscribed circle of the tringle 
𝑂𝑂, 𝐼𝐼 − centre of circumscribed / inscribed circle of the triangle 
𝜌𝜌𝐴𝐴,𝜌𝜌𝐵𝐵 ,𝜌𝜌𝐶𝐶 − radii of circles escribed to the triangle opposite to vertices 𝐴𝐴,𝐴𝐴,𝐴𝐴 
 𝐼𝐼𝐴𝐴, 𝐼𝐼𝐵𝐵 , 𝐼𝐼𝐶𝐶 − centres of circles escribed to the triangle opposite to vertices 𝐴𝐴,𝐴𝐴,𝐴𝐴 
𝑋𝑋,𝑌𝑌,𝑍𝑍 – the points of touch of sides 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 of with inscribed circle 
𝑋𝑋𝐴𝐴,𝑌𝑌𝐴𝐴 ,𝑍𝑍𝐴𝐴 − the points of touch of escribed circle opposite to vertex 𝐴𝐴 with sides 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 
(similarly for remaining two escribed circles) 
𝐴𝐴1,𝐴𝐴1,𝐴𝐴1 − centres of sides 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 of the triangle 
𝑠𝑠 = 𝑎𝑎+𝑏𝑏+𝑐𝑐

2
− half of perimeter of the triangle 

 
Part of the notation is depicted in Fig. 1. 
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FIGURE 1. Illustration of the notation concerning elements of a triangle 

 
We state here without proof some generally known facts: 

|𝐴𝐴𝑍𝑍𝐴𝐴| = |𝐴𝐴𝑌𝑌𝐴𝐴| = |𝐴𝐴𝑍𝑍𝐵𝐵| = |𝐴𝐴𝑋𝑋𝐵𝐵| = |𝐴𝐴𝑌𝑌𝐶𝐶| = |𝐴𝐴𝑋𝑋𝐶𝐶| =
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐

2
= 𝑠𝑠, 

|𝐴𝐴𝑍𝑍| = |𝐴𝐴𝑌𝑌| = 𝑠𝑠 − 𝑎𝑎,        |𝐴𝐴𝑋𝑋| = |𝐴𝐴𝑌𝑌| = 𝑠𝑠 − 𝑐𝑐,         |𝐴𝐴𝑍𝑍| = |𝐴𝐴𝑋𝑋| = 𝑠𝑠 − 𝑏𝑏. 
 
Now we state two facts and four equations with proofs, which are critical for following 
considerations. All proofs are related to Fig. 2. 
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FIGURE 2. Proof of theorems 1.1 to 1.6. 

Theorem 1.1. 
The radius of the inscribed circle can be expressed as 

𝜌𝜌 = 4𝑅𝑅 ∙ sin 𝛼𝛼
2
∙ sin 𝛽𝛽

2
∙ sin 𝛾𝛾

2
.   (1) 

Proof: 
Let 𝑀𝑀 be the middle point of the arc 𝐴𝐴𝐴𝐴 of the circle circumscribing the triangle 𝐴𝐴𝐴𝐴𝐴𝐴 (Fig. 2). 
Then the following Lemma holds. 
Lemma 1.2. 
𝑀𝑀 is the centre of the circle circumscribed about quadrilateral 𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼𝐶𝐶 . 
Proof of Lemma 1.2. According to Thales’ theorem, the centre of circumscribed circle about 
𝐴𝐴𝐼𝐼𝐴𝐴𝐼𝐼𝐶𝐶  lies on the segment 𝐼𝐼𝐼𝐼𝐶𝐶  (the angles 𝐼𝐼𝐴𝐴𝐼𝐼𝐶𝐶 and 𝐼𝐼𝐴𝐴𝐼𝐼𝐶𝐶  are right, because they are made up of 
bisectors of adjacent angles). It must also lie on the perpendicular bisector of segment 𝐴𝐴𝐴𝐴, i.e. 
on the line 𝑂𝑂𝑀𝑀. As it is known, the lines intersect in the point 𝑀𝑀 and the lemma is proved. 
Proof of Theorem 1.1. We rearrange the right-hand side of the equation (1) in the following 
way: 
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4𝑅𝑅 ∙ sin
𝛼𝛼
2
∙ sin

𝛽𝛽
2
∙ sin

𝛾𝛾
2

= 2 �2𝑅𝑅 ∙ sin
𝛾𝛾
2
� ∙ sin

𝛼𝛼
2
∙ sin

𝛽𝛽
2

= 2|𝐴𝐴𝑀𝑀| ∙ sin
𝛼𝛼
2
∙ sin

𝛽𝛽
2

= |𝐼𝐼𝐼𝐼𝐶𝐶| ∙ sin
𝛽𝛽
2
∙ sin

𝛼𝛼
2

= |𝐼𝐼𝐴𝐴| ∙ sin
𝛼𝛼
2

= 𝜌𝜌. 
 
Theorem 1.3. 
It is possible to express the half of perimeter of a triangle as 

𝑠𝑠 = 4𝑅𝑅 ∙ cos 𝛼𝛼
2
∙ cos 𝛽𝛽

2
∙ cos 𝛾𝛾

2
.   (2) 

 
Proof: 
Let 𝑁𝑁 denotes the middle point of arc 𝐴𝐴𝐴𝐴 of circumscribed circle of the triangle containing the 
vertex 𝐴𝐴. Then the following Lemma holds. 
Lemma 1.4. 
The point 𝑁𝑁 is the centre of the circle circumscribed about quadrilateral 𝐼𝐼𝐵𝐵𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴. 
Proof of Lemma 1.3. According to Thales’ theorem, the centre of circumscribed circle about the 
quadrilateral 𝐼𝐼𝐵𝐵𝐴𝐴𝐴𝐴𝐼𝐼𝐴𝐴 lies on the segment 𝐼𝐼𝐵𝐵𝐼𝐼𝐴𝐴. It must also lie on the perpendicular bisector of 
segment 𝐴𝐴𝐴𝐴, which is the line 𝑀𝑀𝑁𝑁. It is known that the lines intersect in the point 𝑁𝑁. The Lemma 
is proved. 
Proof of Theorem 1.3. The right-hand side of equation (2) can be expressed as 

4𝑅𝑅 ∙ cos
𝛼𝛼
2
∙ cos

𝛽𝛽
2
∙ cos

𝛾𝛾
2

= 2 �2𝑅𝑅 ∙ cos
𝛾𝛾
2
� ∙ cos

𝛼𝛼
2
∙ cos

𝛽𝛽
2

= 2|𝐴𝐴𝑁𝑁| ∙ cos
𝛼𝛼
2
∙ cos

𝛽𝛽
2

= |𝐼𝐼𝐵𝐵𝐼𝐼𝐴𝐴| ∙ cos
𝛼𝛼
2
∙ cos

𝛽𝛽
2

= |𝐼𝐼𝐵𝐵𝐴𝐴| ∙ cos
𝛽𝛽
2

= |𝑍𝑍𝐵𝐵𝐴𝐴| = 𝑠𝑠. 
 
Theorem 1.5. 
The following identity holds: 

1
2
∙ (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶 − 𝜌𝜌) = 2𝑅𝑅.  (3) 

 
Proof: 
The quadrilateral 𝐼𝐼𝐵𝐵𝑍𝑍𝐵𝐵𝑍𝑍𝐴𝐴𝐼𝐼𝐴𝐴 is trapezium and |𝑁𝑁𝐴𝐴1| is its midsegment (point 𝑁𝑁 is the midpoint 
of segment 𝐼𝐼𝐵𝐵𝐼𝐼𝐴𝐴 and point 𝐴𝐴1 is the midpoint of segment 𝐴𝐴𝐴𝐴). Hence 

|𝑁𝑁𝐴𝐴1| =
1
2

(|𝐼𝐼𝐵𝐵𝑍𝑍𝐵𝐵| + |𝐼𝐼𝐴𝐴𝑍𝑍𝐴𝐴|) =
1
2

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵). 
Moreover, since the point 𝐴𝐴1 is the midpoint of segment 𝑍𝑍𝐶𝐶𝑍𝑍 (the proof is based on the fact that 
|𝑍𝑍𝐴𝐴| = 𝑠𝑠 − 𝑏𝑏 and |𝐴𝐴𝑍𝑍𝐶𝐶| = |𝐴𝐴𝑌𝑌𝐶𝐶| = |𝐴𝐴𝑌𝑌𝐶𝐶| − |𝐴𝐴𝐴𝐴| = 𝑠𝑠 − 𝑏𝑏), the symmetrical of the point 𝐼𝐼 with 
respect to the centre 𝐴𝐴1 is a point 𝐼𝐼′ lying on the segment |𝑍𝑍𝐶𝐶𝐼𝐼𝐶𝐶|. Let’s consider a triangle 𝐼𝐼′𝐼𝐼𝐼𝐼𝐶𝐶. 
It is evident, that 

|𝐼𝐼′𝐼𝐼𝐶𝐶| = 𝜌𝜌𝐶𝐶 − 𝜌𝜌 
and 

|𝑀𝑀𝐴𝐴1| =
1
2

|𝐼𝐼′𝐼𝐼𝐶𝐶| =
1
2

(𝜌𝜌𝐶𝐶 − 𝜌𝜌). 
Hence 

2𝑅𝑅 = |𝑀𝑀𝐴𝐴1| + |𝑁𝑁𝐴𝐴1| =
1
2

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵) +
1
2

(𝜌𝜌𝐶𝐶 − 𝜌𝜌) 
and the equation (3) is proved. 
 
Theorem 1.6. 
It holds 

|𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| = 𝑅𝑅 + 𝜌𝜌.  (4) 
 
Proof: 
It is 
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|𝑂𝑂𝐴𝐴1| = |𝑂𝑂𝑀𝑀| − |𝑀𝑀𝐴𝐴1| = 𝑅𝑅 −
1
2

(𝜌𝜌𝐶𝐶 − 𝜌𝜌). 
Similarly, we express segments |𝑂𝑂𝐴𝐴1| and |𝑂𝑂𝐴𝐴1|. Hence 

|𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| = 𝑅𝑅 + 𝜌𝜌 + �2𝑅𝑅 −
1
2
∙ (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶 − 𝜌𝜌)� = 𝑅𝑅 + 𝜌𝜌. 

Note: The relation  

|𝑂𝑂𝐴𝐴1| = 𝑅𝑅 −
1
2

(𝜌𝜌𝐶𝐶 − 𝜌𝜌) 
holds only in the case that the point 𝐴𝐴1 lies between points 𝑂𝑂 and 𝑀𝑀 (in other words |𝑀𝑀𝐴𝐴1| ≤
|𝑀𝑀𝑂𝑂|). In the opposite case the distance |𝑂𝑂𝐴𝐴1| must be taken negative, because only under such 
convention the equation (4) holds in all cases. Since the relation 

|𝑂𝑂𝐴𝐴1| = 𝑅𝑅 ∙ cos 𝛾𝛾 
takes into account the sign (for 𝛾𝛾 > 90° it gives |𝑂𝑂𝐴𝐴1| negative), we do not have to distinguish 
between acute and obtuse angled triangles. 
 
Theorem 1.7. 
Among all triangles inscribed in a given circle with radius 𝑅𝑅, the equilateral triangle has the 
greatest area and greatest perimeter. (The area is 𝑆𝑆 = 𝑅𝑅2 3√3

4
 , the perimeter is 2𝑠𝑠 = 3√3𝑅𝑅.)  

 
The proof is left to the reader. 
(Hint: Use proof by contradiction. In the case of area, the task is trivial. In the case of perimeter, 
assume that at least two of the sides of the searched triangle are unequal and show that there is 
a triangle with greater perimeter. It is possible to solve both problems in a synthetic way.) 
 
 

2. (IN)EQUALITIES IN A TRIANGLE PROVED BY ‘GEOMETRIC APPROACH’ 

This section contains eleven problems on (in)equalities. Firstly, the problem is stated, then 
follows its solution. All solutions are in ‘geometric fashion’ (in the sense stated in introduction 
– the solution does not contain sum and difference formulas of trigonometric functions) and 
some of them rely on theorems formulated in the preceding section. 
It is recommended to the reader to think about the problems (if she/he does not want to solve 
the problems) and only then to read the solution. The problems are arranged according to 
difficultness (which is a subjective criterion) and are partly interdependent. 
 
 
(In)Equalities: 
 
Problem 1. 

Prove that 
𝑅𝑅 ≥ 2𝜌𝜌. 

(It is famous “Euler inequality”) 
 

Solution: 
The simplest justification of this fact is following: 

1. From all circles intersecting three sides of a triangle in (at least) one point, the circle 
inscribed in a triangle has the lowest radius. 

2. The circle circumscribed about 𝐴𝐴1𝐴𝐴1𝐴𝐴1 (circle passing through middle points of sides) 
has radius 𝑅𝑅/2. 

3. Hence 𝜌𝜌 ≤ 𝑅𝑅
2
, the equality occurring in the case of equilateral triangle 
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Problem 2. 

Prove that  
sin 2𝛼𝛼 + sin 2𝛽𝛽 + sin 2𝛾𝛾 = 4 sin𝛼𝛼 ∙ sin𝛽𝛽 ∙ sin 𝛾𝛾. 

 
Solution: 
Let’s multiply the equation by 𝑅𝑅2: 

𝑅𝑅2 ∙ sin 2𝛼𝛼 + 𝑅𝑅2 ∙ sin 2𝛽𝛽 + 𝑅𝑅2 ∙ sin 2𝛾𝛾 = 4𝑅𝑅2 ∙ sin𝛼𝛼 ∙ sin𝛽𝛽 ∙ sin 𝛾𝛾 

Obviously 𝑅𝑅2 ∙ sin 2𝛼𝛼 = 2 ∙ 𝑆𝑆𝐶𝐶𝐶𝐶𝐵𝐵 , where 𝑆𝑆𝐶𝐶𝐶𝐶𝐵𝐵  is area of triangle 𝐴𝐴𝑂𝑂𝐴𝐴. Similarly, 𝑅𝑅2 ∙
sin 2𝛽𝛽 = 2 ∙ 𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶  and 𝑅𝑅2 ∙ sin 2𝛾𝛾 = 2 ∙ 𝑆𝑆𝐴𝐴𝐶𝐶𝐵𝐵 , hence 𝑅𝑅2 ∙ sin 2𝛼𝛼 + 𝑅𝑅2 ∙ sin 2𝛽𝛽 + 𝑅𝑅2 ∙ sin 2𝛾𝛾 =
2(𝑆𝑆𝐶𝐶𝐶𝐶𝐵𝐵 + 𝑆𝑆𝐴𝐴𝐶𝐶𝐶𝐶 + 𝑆𝑆𝐴𝐴𝐶𝐶𝐵𝐵) = 2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 .  
After rearranging the expression  

4𝑅𝑅2 ∙ sin𝛼𝛼 ∙ sin𝛽𝛽 ∙ sin 𝛾𝛾 = (2𝑅𝑅 ∙ sin𝛼𝛼)(2𝑅𝑅 ∙ sin𝛽𝛽) ∙ sin 𝛾𝛾 = 𝑎𝑎𝑏𝑏 ∙ sin 𝛾𝛾 = 2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶  

the equality follows. 
 
 

Problem 3. 
Prove that 

sin 2𝛼𝛼 + sin 2𝛽𝛽 + sin 2𝛾𝛾 ≤ sin𝛼𝛼 + sin𝛽𝛽 + sin 𝛾𝛾. 
 

Solution: 
We will proceed as in the preceding case: 

𝑅𝑅2 ∙ sin 2𝛼𝛼 + 𝑅𝑅2 ∙ sin 2𝛽𝛽 + 𝑅𝑅2 ∙ sin 2𝛾𝛾 ≤ 𝑅𝑅2 ∙ sin𝛼𝛼 + 𝑅𝑅2 ∙ sin𝛽𝛽 + 𝑅𝑅2 ∙ sin 𝛾𝛾 

The left-hand side, as it is known, is equal 2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 . Rearranging the right side, we get 

𝑅𝑅2 ∙ sin𝛼𝛼 + 𝑅𝑅2 ∙ sin𝛽𝛽 + 𝑅𝑅2 ∙ sin 𝛾𝛾 = 𝑅𝑅(𝑅𝑅 sin𝛼𝛼 + 𝑅𝑅 sin𝛽𝛽 + 𝑅𝑅 sin 𝛾𝛾) = 𝑅𝑅 �
𝑎𝑎
2

+
𝑏𝑏
2

+
𝑐𝑐
2
� = 𝑅𝑅𝑠𝑠, 

where 𝑠𝑠 is the half of perimeter. 
On the basis of inequality 𝑅𝑅 ≥ 2𝜌𝜌 (Problem 1) we obtain 

𝑅𝑅2 ∙ sin𝛼𝛼 + 𝑅𝑅2 ∙ sin𝛽𝛽 + 𝑅𝑅2 ∙ sin 𝛾𝛾 = 𝑅𝑅𝑠𝑠 ≥ 2𝜌𝜌𝑠𝑠 = 2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 =

= 𝑅𝑅2 ∙ sin 2𝛼𝛼 + 𝑅𝑅2 ∙ sin 2𝛽𝛽 + 𝑅𝑅2 ∙ sin 2𝛾𝛾 

 
 

Problem 4. 
Prove that 

sin
𝛼𝛼
2
∙ sin

𝛽𝛽
2
∙ sin

𝛾𝛾
2
≤

1
8

. 
 

Solution: 
Since 𝑅𝑅 ≥ 2𝜌𝜌, we substitute from equation (1) to 𝜌𝜌 and get 

𝑅𝑅 ≥ 8𝑅𝑅 ∙ sin𝛼𝛼/2 ∙ sin𝛽𝛽/2 ∙ sin 𝛾𝛾/2 
which is the proven inequality. 

 
 

Problem 5. 
Prove that 

cos𝛼𝛼 + cos𝛽𝛽 + cos 𝛾𝛾 ≤
3
2

. 
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Solution: 
We have to prove 

𝑅𝑅 cos𝛼𝛼 + 𝑅𝑅 cos𝛽𝛽 + 𝑅𝑅 cos 𝛾𝛾 ≤
3
2
𝑅𝑅. 

The left side of this inequality is 
𝑅𝑅 cos𝛼𝛼 + 𝑅𝑅 cos𝛽𝛽 + 𝑅𝑅 cos 𝛾𝛾 = |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1|. 

According to (4)  

|𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| = 𝑅𝑅 + 𝜌𝜌 ≤ 𝑅𝑅 +
𝑅𝑅
2

=
3
2
𝑅𝑅. 

 
 

Problem 6. 
Prove that 

sin𝛼𝛼 + sin𝛽𝛽 + sin 𝛾𝛾 ≤
3√3

2
 

 
Solution: 
We multiply the assumed inequality by 𝑅𝑅 

𝑅𝑅 sin𝛼𝛼 + 𝑅𝑅 sin𝛽𝛽 + 𝑅𝑅 sin 𝛾𝛾 ≤ 𝑅𝑅
3√3

2
 

and interpret the left side 

𝑅𝑅 sin𝛼𝛼 + 𝑅𝑅 sin𝛽𝛽 + 𝑅𝑅 sin 𝛾𝛾 =
(𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐)

2
= 𝑠𝑠. 

According to theorem 1.7. the greatest perimeter among all triangles inscribed in a given circle 
has the equilateral triangle, hence 2𝑠𝑠 ≤ 3√3𝑅𝑅 and the solution follows: 

𝑅𝑅 sin𝛼𝛼 + 𝑅𝑅 sin𝛽𝛽 + 𝑅𝑅 sin 𝛾𝛾 = 𝑠𝑠 ≤ 𝑅𝑅
3√3

2
. 

 
 

Problem 7. 
Prove that 

sin𝛼𝛼 ∙ sin𝛽𝛽 ∙ sin 𝛾𝛾 ≤
3√3

8
. 

 
Solution: 
We multiply the equation by 2𝑅𝑅2 

2𝑅𝑅2 sin𝛼𝛼 ∙ sin𝛽𝛽 ∙ sin 𝛾𝛾 ≤ 𝑅𝑅2
3√3

4
. 

The left side is equal to 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 , as we derived in the problem 2,. Therefore, we have to prove 

𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 ≤ 𝑅𝑅2
3√3

4
 

which is (due to the Theorem 1.7) valid. 
 
 

Problem 8. 
Prove that 

𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑐𝑐 ≤
9
2
𝑅𝑅, 

where 𝑚𝑚𝑎𝑎, 𝑚𝑚𝑏𝑏, 𝑚𝑚𝑐𝑐 are medians of sides 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 of a triangle. 
 

Solution: 
From the triangle inequality theorem follows (Fig. 2) 



 (IN)EQUALITIES IN A TRIANGLE 9 

𝑚𝑚𝑐𝑐 ≤ |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴| = |𝑂𝑂𝐴𝐴1| + 𝑅𝑅 

Similar inequalities are valid for other medians. Hence 

𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑐𝑐 ≤ 3𝑅𝑅 + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| = 4𝑅𝑅 + 𝜌𝜌 ≤
9
2
𝑅𝑅. 

We used equation (4) and the conclusion of Problem 1. 
Note: The reader should be aware of the fact, that the solution is valid only for right and acute-
angled triangles. For obtuse-angled triangles, for example, with obtuse angle at the vertex 𝐴𝐴, the 
distance |𝑂𝑂𝐴𝐴1| would be negative (when using the equation (4)) and the proof collapses: 
 
𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑐𝑐 ≤ 3𝑅𝑅 + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| > 3𝑅𝑅 + |𝑂𝑂𝐴𝐴1| + |𝑂𝑂𝐴𝐴1| − |𝑂𝑂𝐴𝐴1| = 4𝑅𝑅 + 𝜌𝜌. 

It can be shown, that for obtuse-angled triangles a stronger inequality holds. However, the author 
was not able to prove it by purely ‘geometric approach’. But it is possible to prove by synthetic 
way a certain “weaker theorem”, from which the proof of the inequality follows: To every 
obtuse-angled triangle, there exists another triangle, which has a greater sum of medians then 
the original one. If there exists an obtuse-angled triangle, for which 𝑚𝑚𝑎𝑎 + 𝑚𝑚𝑏𝑏 + 𝑚𝑚𝑐𝑐 > 9

2
𝑅𝑅, then 

there must be an obtuse-angled triangle, for which the sum is maximal (among all triangles, 
since acute-angled triangles are eliminated). But this contradicts the “weaker theorem”. 
(Probably more elegant way how to eliminate obtuse-angled triangles exists. Alas, the author 
did not know it). 

 
 

Problem 9. 
Prove that 

tan
𝛼𝛼
2
∙ tan

𝛽𝛽
2

+ tan
𝛽𝛽
2
∙ tan

𝛾𝛾
2

+ tan
𝛾𝛾
2
∙ tan

𝛼𝛼
2

= 1. 
 

Solution: 
Dividing the supposed equality 

tan
𝛼𝛼
2
∙ tan

𝛽𝛽
2

+ tan
𝛽𝛽
2
∙ tan

𝛾𝛾
2

+ tan
𝛾𝛾
2
∙ tan

𝛼𝛼
2

= 1 

by tan 𝛼𝛼
2
∙ tan 𝛽𝛽

2
∙ tan 𝛾𝛾

2
, we get an equivalent expression 

cot
𝛼𝛼
2

+ cot
𝛽𝛽
2

+ cot
𝛾𝛾
2

= cot
𝛼𝛼
2

cot
𝛽𝛽
2

cot
𝛾𝛾
2

. 

Because (fig. 2) 

cot
𝛼𝛼
2

=
|𝐴𝐴𝑍𝑍|
|𝐼𝐼𝑍𝑍| =

𝑠𝑠 − 𝑎𝑎
𝜌𝜌

, cot
𝛽𝛽
2

=
𝑠𝑠 − 𝑏𝑏
𝜌𝜌

, cot
𝛾𝛾
2

=
𝑠𝑠 − 𝑐𝑐
𝜌𝜌

 

we can arrange the left side of the expression: 

cot
𝛼𝛼
2

+ cot
𝛽𝛽
2

+ cot
𝛾𝛾
2

=
𝑠𝑠
𝜌𝜌

. 

Finally, we replace 𝑠𝑠 and 𝜌𝜌 by formulas (1), (2): 
𝑠𝑠
𝜌𝜌

=
4𝑅𝑅 ∙ cos𝛼𝛼/2 ∙ cos𝛽𝛽/2 ∙ cos 𝛾𝛾/2
4𝑅𝑅 ∙ sin𝛼𝛼/2 ∙ sin𝛽𝛽/2 ∙ sin 𝛾𝛾/2

= cot
𝛼𝛼
2

cot
𝛽𝛽
2

cot
𝛾𝛾
2

. 

 
 

Problem 10. 
Prove that 

𝜌𝜌𝐴𝐴
ℎ𝑎𝑎 + 2𝜌𝜌𝐴𝐴

+
𝜌𝜌𝐵𝐵

ℎ𝑏𝑏 + 2𝜌𝜌𝐵𝐵
+

𝜌𝜌𝐶𝐶
ℎ𝑐𝑐 + 2𝜌𝜌𝐶𝐶

= 1 

where ℎ𝑎𝑎, ℎ𝑏𝑏 and ℎ𝑐𝑐 are lengths of heights to the sides 𝑎𝑎, 𝑏𝑏, 𝑐𝑐. 
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Solution: 
Because 

𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶 = 𝑆𝑆𝐴𝐴𝐶𝐶𝐼𝐼𝐴𝐴 + 𝑆𝑆𝐴𝐴𝐵𝐵𝐼𝐼𝐴𝐴 − 𝑆𝑆𝐵𝐵𝐶𝐶𝐼𝐼𝐴𝐴 =
1
2
𝑏𝑏𝜌𝜌𝐴𝐴 +

1
2
𝑐𝑐𝜌𝜌𝐴𝐴 −

1
2
𝑎𝑎𝜌𝜌𝐴𝐴 =

𝑏𝑏 + 𝑐𝑐 − 𝑎𝑎
2

𝜌𝜌𝐴𝐴 = (𝑠𝑠 − 𝑎𝑎)𝜌𝜌𝐴𝐴 
(Fig. 2), it holds 

𝜌𝜌𝐴𝐴 =
𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶

(𝑠𝑠 − 𝑎𝑎)
. 

Further 

ℎ𝑎𝑎 =
2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶

𝑎𝑎
. 

We rearrange the first term on the left side of the proven identity: 

𝜌𝜌𝐴𝐴
ℎ𝑎𝑎 + 2𝜌𝜌𝐴𝐴

=

𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶
(𝑠𝑠 − 𝑎𝑎)

2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶
𝑎𝑎 + 2 ∙ 𝑆𝑆𝐴𝐴𝐵𝐵𝐶𝐶

(𝑠𝑠 − 𝑎𝑎)

=

1
(𝑠𝑠 − 𝑎𝑎)

2𝑠𝑠
𝑎𝑎(𝑠𝑠 − 𝑎𝑎)

=
𝑎𝑎

2𝑠𝑠
 

Expressing similarly the remaining two terms, we get 
𝑎𝑎

2𝑠𝑠
+
𝑏𝑏

2𝑠𝑠
+
𝑐𝑐

2𝑠𝑠
= 1. 

 
 
Problem 11. 

Let 𝐼𝐼 be the centre of the circle inscribed in a triangle 𝐴𝐴𝐴𝐴𝐴𝐴. Further notation is depicted on 
the following picture. 

 

 
 
Prove that 

|𝐼𝐼𝐼𝐼| ∙ |𝐼𝐼𝐼𝐼| ∙ |𝐼𝐼𝐼𝐼| ≥ |𝐼𝐼𝐴𝐴| ∙ |𝐼𝐼𝐴𝐴| ∙ |𝐼𝐼𝐴𝐴|. 
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Solution: 
We express the inequality in terms of radii 𝑅𝑅 and 𝜌𝜌 of circumscribed and inscribed circles. 
Let’s begin by the left-hand side. As follows from Lemma 1.2: |𝐼𝐼𝐼𝐼| = |𝐴𝐴𝐼𝐼| = 2𝑅𝑅 sin 𝛾𝛾

2
. 

Similarly, we express |𝐼𝐼𝐼𝐼| and |𝐼𝐼𝐼𝐼| and get 

|𝐼𝐼𝐼𝐼| ∙ |𝐼𝐼𝐼𝐼| ∙ |𝐼𝐼𝐼𝐼| = 2𝑅𝑅 sin
𝛼𝛼
2
∙ 2𝑅𝑅 sin

𝛽𝛽
2
∙ 2𝑅𝑅 sin

𝛾𝛾
2

= 2𝑅𝑅2 �4𝑅𝑅 sin
𝛼𝛼
2

sin
𝛽𝛽
2

sin
𝛾𝛾
2
� = 2𝑅𝑅2𝜌𝜌 

(we used equation (1) in this expression). 
For the right-hand side we have 

|𝐴𝐴𝐼𝐼| =
𝜌𝜌

sin𝛼𝛼2
. 

Similarly, we express |𝐴𝐴𝐼𝐼| and |𝐴𝐴𝐼𝐼| and get 

|𝐼𝐼𝐴𝐴| ∙ |𝐼𝐼𝐴𝐴| ∙ |𝐼𝐼𝐴𝐴| =
𝜌𝜌

sin𝛼𝛼2
∙
𝜌𝜌

sin𝛽𝛽2

∙
𝜌𝜌

sin 𝛾𝛾2
=

4𝑅𝑅 ∙ 𝜌𝜌3

4𝑅𝑅 sin𝛼𝛼2 sin𝛽𝛽2 sin 𝛾𝛾2

= 4𝑅𝑅 ∙ 𝜌𝜌2. 

The original inequality is equivalent to the inequality 2𝑅𝑅2𝜌𝜌 ≥ 4𝑅𝑅 ∙ 𝜌𝜌2, or after simplification 
𝑅𝑅 ≥ 2𝜌𝜌, 

to ubiquitous Euler inequality. 
The equality occurs only in the case of an equilateral triangle. 

CONCLUSION 

The purpose of the article is to show how some of (in)equalities in a triangle can be proven 
geometrically – by reducing given inequality to a property, which can be processed 
synthetically. Many publications are devoted to the topic of inequalities in geometry, e.g. the 
previously mentioned publication [1], which inspired the author to this article. It is needed to 
emphasize that not all inequalities can be solved purely geometrically (at least in a sense, that 
such approach is straightforward). As an illustration, here is an example with the solution 
demanding both geometrical and algebraic approach. 
 
Example. 
Prove that 
 

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵) ∙ (𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶) ∙ (𝜌𝜌𝐶𝐶 + 𝜌𝜌𝐴𝐴) ≤ 27𝑅𝑅3. 
 
Solution: 
According to A-G inequality: 

(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵) ∙ (𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶) ∙ (𝜌𝜌𝐶𝐶 + 𝜌𝜌𝐴𝐴) ≤ �
(𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵) + (𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶) + (𝜌𝜌𝐶𝐶 + 𝜌𝜌𝐴𝐴)

3
�
3

=

= �
2 ∙ (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶)

3
�
3

. 

According to equation (3) 
2 ∙ (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶) = 8𝑅𝑅 + 2𝜌𝜌. 

Finally, due to the conclusion of the Problem 1, 
8𝑅𝑅 + 2𝜌𝜌 ≤ 9𝑅𝑅, 

hence 

�
2 ∙ (𝜌𝜌𝐴𝐴 + 𝜌𝜌𝐵𝐵 + 𝜌𝜌𝐶𝐶)

3
�
3

≤ �
9𝑅𝑅
3
�
3

= 27𝑅𝑅3. 
 

Publications usually do not distinguish between geometric and algebraic approaches. The 
purposeful task is to organize different approaches to geometric problems from pure synthetic 
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to pure algebraic, or to solve identical problems in both ways. The article could serve as a first 
glance at this topic. 
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