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HOW TO USE DYNAMIC GEOMETRY IN A TRANSFORMATIVE WAY 

JANA TRGALOVÁ 

ABSTRACT. In 1980s, with the uptake of digital technology in education, the use of 

computers was contrasted in two metaphors: in the amplifier metaphor, technology 

allows performing tasks faster, more efficiently and accurately, whereas in the 

reorganizer metaphor, technology qualitatively changes the content and the cognitive 

processes engaged in problem solving. In this paper, we take dynamic geometry as an 

example of digital technology to illustrate various ways in which it can be used, 

referring to the SAMR model. Focusing on the dragging functionality, the pivotal 

feature of dynamic geometry system, we highlight a variety of uses and the 

corresponding mathematical conceptualizations. We conclude with some implications 

bringing to light challenges that mathematics teachers face with the use of digital 

technologies.  

INTRODUCTION: ROLE OF DIGITAL TECHNOLOGY IN EDUCATION 

Whether to use or not digital technology in mathematics classrooms is not an issue anymore 

nowadays, the question rather shifted to how to use it more efficiently and how to benefit the 

best from its affordances [5]. Since 1980s, researchers question the role technology should play 

in education. Two distinct roles have been highlighted by Pea [18] and described in terms of 

amplifier and reorganizer metaphors. The amplifier metaphor suggests that technology changes 

“how effectively we do traditional tasks, amplifying or extending our capabilities, with the 

assumption that these tasks stay fundamentally the same” (p. 168), while the reorganizer 

metaphor posits that technology changes “the tasks we do by reorganizing our mental 

functioning, and not only by amplifying it” (ibid.). A simplified vision of the two metaphors 

leads to considering the use of digital technology either to do traditional tasks although in a 

different way, or to do new tasks that cannot be done without this technology [22]. Likewise, 

Thomas and Lin [24] point out that key affordances of technology emanate from the tasks that 

are used with it. However, designing tasks incorporating technology and having an epistemic 

value [7] is not trivial for mathematics teachers.  

In this paper, we aim at highlighting that a given (mathematical) digital tool can be mobilized 

in manifold ways with different learning potential. We illustrate these considerations on the 

example of dynamic geometry (DG). The choice of dynamic geometry is motivated by a 

discrepancy between its potential to support students’ learning evidenced by numerous research 

(e.g., [14], [2], [1]) on the one hand, and its limited use in mathematics classrooms (e.g., [17], 

[8], [3]).  
Jones [6] claims that “carefully designed tasks” with their appropriate enactment by the 

teacher are necessary for an efficient use of DG fostering students’ learning: 

Overall, research in this area [use of DG software] indicates that successful access to 

geometrical theory does not happen without carefully designed tasks, professional 

teacher input, and opportunities for students to conjecture, to make mistakes, to reflect, 
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to interpret relationships among objects, and to offer tentative mathematical 

explanations. (p. 29) 

This paper therefore proposes an analysis of selected DG tasks aiming at highlighting their 

differences in terms of student’s cognitive activity, thus showing the range of potential use of 

DG.      

The tasks, analyzed in Section 2, are categorized according to the SAMR framework 

presented in Section 1. The concluding section discusses implications of the analyses for the 

teaching and learning mathematics with technology. 

1. SAMR MODEL 

The model proposed by Puentedura [19] identifies four different levels of classroom technology 

integration. The acronym “SAMR” stands for Substitution, Augmentation, Modification and 

Redefinition (Figure 1), the four levels that allow for questioning how technology is integrated 

into teaching and learning processes.   

 

FIGURE 1. SAMR model1 [19] 

Let us briefly present the four levels of technology use from substitution to redefinition and 

illustrate them on the example of a quiz.  

At the substitution level, technology is simply substituted to traditional teaching tools or 

methods. An online version of a traditional paper-based quiz, where the student checks what 

she considers as correct answers, does not offer her any functional change. Technology in this 

case is thus used as a substitute of a paper quiz, although it can facilitate administration of the 

quiz (via a url instead of paper copies for example) and collection of students’ responses.  

At the augmentation level, technology substitutes traditional tools or methods, but with 

significant enhancements to the student experience. If the environment within which the quiz is 

implemented can provide feedback about the correctness of the answer, this functional 

improvement fosters student learning. Indeed numerous studies suggest that feedback is most 

effective when it is provided immediately, rather than days or weeks later, and seems to 

positively impact both students’ achievement (e.g. [20]) and engagement (e.g. [23]).  

At the modification level, technology deeply modifies tasks assigned to students offering 

them a richer learning experience. If the environment within which a quiz is designed provides 

not only true-false feedback but a more elaborated feedback such as hints (e.g., link to lessons) 

 
1 http://hippasus.com/resources/tte/puentedura_tte.pdf  

http://hippasus.com/resources/tte/puentedura_tte.pdf
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in case of incorrect answers, the student’s learning experience is significantly changed: such 

feedback supports learning by orienting the student toward appropriate remedial activities. 

At the redefinition level, technology allows for designing learning experiences that are not 

possible without it. A quiz that personalizes student’s path through the items according to her 

answers can only be developed with technology. 

As we show in the following section, the four levels of the SAMR model align with the four 

roles of dynamic geometry identified by Laborde [10]. For this reason, we refer to this 

framework when considering various uses of dynamic geometry.  

2. VARIOUS USES OF DYNAMIC GEOMETRY 

Laborde [10] identified four different roles of dynamic geometry in the tasks: 

 DG is used “mainly as facilitating material aspects of the task while not changing it 

conceptually” (p. 293). These are for example construction tasks in which the only 

difference “lies in the drawing facilities offered” by dynamic geometry (ibid.). 

Dynamic geometry can be seen as a substitute of traditional tool. 

 DG “is supposed to facilitate the mathematical task that is considered as unchanged”. 

In this case, “DG is used as a visual amplifier […] in the task of identifying properties” 

(ibid.). Indeed, geometric properties of a figure being preserved while dragging its free 

elements, their visual recognition is facilitated. Dynamic geometry substitutes 

traditional tools, but brings certain functional improvement (augmentation). 

 DG “is supposed to modify the solving strategies of the task due to the use of some of 

its tools and to the possibility that the task might be rendered more difficult” (ibid.). 

Whereas a construction of a geometric figure with traditional tools can result in a 

visually correct drawing although controlled by perception, the same task in DG 

environment requires using geometric properties to obtain a figure that resists while 

dragging its free elements. Solving strategies in DG environment are thus deeply 

modified. 

 The task only exists in DG environment. Laborde [10] refers to the so-called “black 

box” tasks in which students are asked to reconstruct a dynamic figure provided in a 

DG environment that preserves geometric relations when its free elements are dragged 

(redefinition). 

In the following sections (2.1-2.4), organized according to the levels of the SAMR model, 

we discuss various possible uses of DG. Following Lopez-Real and Leung [15], who consider 

that  

dragging in DGE can open up some kind of semantic space (meaning potential) for 

mathematical concept formation in which dragging modalities (strategies) are temporal-

dynamic semiotic mediation instruments that can create mathematical meanings (p. 666),  

we focus on the dragging functionality of dynamic geometry to highlight its contribution to 

mathematical conceptualization. 
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2.1. Substitution Level Tasks 

Inviting students to make a free drawing using DG tools, without 

paying attention to geometric relations is perhaps the “simplest” task 

(Figure 2). Such a task can offer an opportunity to the students to get 

acquainted with DG menus and tools when they are introduced to 

this technology. Such a task can also be an occasion to exploit the 

semiotic potential of DG tools by comparing and contrasting them 

with traditional tools. For example, the fact that, in order to draw a 

straight line, the user needs to click to two different spots on the 

screen, which results in creating two distinct points and subsequently 

a line passing through these points, conveys the idea that a straight 

line passes through two distinct points. This is not necessarily the 

case with using a ruler to draw a straight line, which rather 

emphasizes the straightness of the line.  

Another example of a task at the substitution level is constructing 

a geometric figure following a construction program (i.e., a series of 

instructions). In the example shown in Figure 3, the task is proposed 

to primary school pupils. The use of DG presents several advantages. 

The figures pupils construct can be quite complex, not only usual 

ones, since the task is facilitated within the DG environment. Pupils with motor difficulties of 

drawing with traditional instruments can succeed the task. Self-evaluation is also easier as 

drawings are more accurate and pupils can modify elements of the figure without deleting the 

correct steps. 

 
 

FIGURE 3. Construction program (left) yielding a geometric figure (right)2 

Drag mode in these tasks is used to a limited extent, if at all: to adjust elements of a drawing 

either for the purposes of perceptive satisfaction (free drawing) or to separate elements of a 

figure to ease its construction (for example, when two points are too close to each other that 

they may be confused when selecting one of them). Restrepo [21] classifies this dragging 

modality as dragging without mathematical purpose. 

It is not rare to find resources in which DG is used as a mere substitute of traditional tools 

although its potential could have been exploited to a greater extent. An example is given in 

Figure 4 showing a task aiming at discovering that the area of a triangle ABC does not change 

when one of its vertices, say A, belongs to a line parallel to the opposite side [BC]. Instead of 

dragging the vertex A on the line, the task invites to construct three distinct points A1, A2 and 

A3, construct four triangles ABC, A1BC, A2BC, A3BC, display their areas and observe the 

property. 

 
2 Task retrieved from http://www.ac-grenoble.fr/ien.st-gervais/spip.php?article1420  

FIGURE 2. Example 

of a freely drawn 

man 

http://www.ac-grenoble.fr/ien.st-gervais/spip.php?article1420
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FIGURE 4. Task aiming at discovering a property of the area of a triangle 

In this task, the drag mode is not exploited at all. The only contribution of dynamic geometry 

is the accuracy of measures of lengths of the segments and of the areas of the triangles. Such 

tasks could benefit from the drag mode and DG would then be used at the augmentation level, 

as we discuss it in the following section. 

2.2. Augmentation Level Tasks 

Tasks analyzed in this section fall under the robust construction paradigm. Laborde [9] 

characterizes robust constructions as those “for which the drag mode preserves their properties”. 

The author provides the example of an angle AMB inscribed in a circle (Figure 6). When the 

point M is dragged along the circle, one can easily observe that the angle AMB remains right. 

This robust construction shows that “for any point of the circle (except A and B) angle AMB is 

a right angle” [9]. 

  

FIGURE 5. Angle AMB inscribed in a semi-circle 

Typical tasks within this paradigm consist in exploring robust constructions. These may be 

either constructed by a teacher or by students who follow detailed instructions. The students are 

then invited to vary elements of the figure (point M in the above-mentioned example) in order 

to recognize or to discover a geometric property based on the observation of the figure: the 

file:///C:/Users/jtrgalov/Documents/Jana_Dell/Ouvrages, chapitres d'ouvrages/2020_Springer ME-AI/Mon chapitre/Figures/Subst_aire triangl.ggb
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property at stake remains invariant (the measure of the angle AMB). Referring to the Marton et 

al.’s [16] framework of variation, described in [13], the epistemic function of variation enabled 

by dragging in a robust construction is to allow separation of aspects of a figure that vary from 

other aspects that remain invariant. In the above-mentioned example, dragging points A and B 

allows observing for example that the segment [AB] is always a diameter of the circle, but its 

horizontal direction is not a necessary condition for the angle AMB to be right. Laborde [9] 

sums up the contribution of this robust construction to the learning of the associated geometric 

theorem as follows:   

The robust construction contributes to a better identification in action of the elements 

of [the theorem] for several reasons: 

- The construction requires to take into account two conditions to get a right angle: 

AB must be a diameter and M a point on a circle […]. 

- It allows contrasting the invariance of the angle and the varying nature of point M. 

- It exteriorizes the variable nature of point M and the set in which it varies [9].  

Dragging elements of a robust construction allows producing quickly a number of different 

drawings sharing the same geometric property, which helps students “extend their visual images 

of a property […] and reject some spatio-graphical properties” that they can attach to the figure. 

Thus, “the drag mode is used as tool for distinguishing between contingence and necessity” [9], 

which constitutes a clear functional improvement comparing to traditional tools. From the 

instrumental perspective, Restrepo [21] ranges this modality of dragging among exploratory 

dragging modalities: its purpose is to look for invariants in a given figure, which facilitates 

identification of its geometric properties. 

2.3.     Modification Level Tasks 

Robust construction tasks are another kind of tasks falling under robust construction paradigm. 

Students are asked to construct geometric figures that satisfy given conditions even when their 

elements are varied by dragging, for example, construct a square given its side or given its 

diagonal. As Laborde [9] specifies,  

Eye ball constructions are invalidated by the drag mode since it becomes visible that 

some of the conditions are not satisfied. The drag mode is a critical factor in robust 

construction tasks that makes the difference with a paper and pencil environment. In such 

construction tasks in dynamic geometry, the drag mode provides a visual feedback from 

the fact that the construction does not meet all the required conditions. The strength of 

DGE lies in this possibility of showing at the spatio-graphical level the theoretical 

weakness of the construction. 

The necessity to resort to geometric properties when constructing a figure (for example a square 

given its side or its diagonal) modifies deeply the construction task in comparison to the same 

task realized in paper and pencil environment, where the students “very often stay at a graphical 

level and try only to satisfy the visual constraints” [9]. The drag mode provides students with a 

visual feedback about the correctness of their construction; it is therefore used as an instrument 

for validating constructions (also called dragging test, e.g. by Arzarello et al., [1]) and helps 

students gaining awareness of the distinction between a drawing (material diagram representing 

a geometric object) and a figure (theoretical object defined with its properties) [11].   

Less common tasks are those in which students are asked to look for conditions under which 

certain configurations are obtained. In the example taken from [9], a circle with segment [AB] 

as a diameter and a point M not belonging to the circle are given. Students are asked to find a 

position of M outside the disk such that the angle AMB is obtuse (Figure 6). The purpose of this 

task is to let students explore the situation and notice that the angle AMB is acute when M is 

outside the disc and obtuse when it is inside and eventually discover the relationship between 

the measure of AMB and the position of the point M. 
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FIGURE 6. Searching for particular position of the point M 

This construction is coined soft because, as the point M is not constructed as a point on the 

circle, the targeted geometric property, namely the fact that the angle AMB is right when M 

belongs to the circle, is not directly visible, as it is the case in the robust construction (see Fig. 

5). Rather, this property is inferred from observing that “the circle is the border between two 

regions, one in which angle AMB is obtuse and one in which angle AMB is acute” [9], hence 

AMB must be right when M in on the circle. 

Soft constructions present several features that offer interesting learning opportunities. First, 

tasks that exploit soft constructions are more engaging than their robust versions. Indeed, they 

offer genuine problems to be solved and dynamic geometry is a support for exploring given 

situations. Pea [18] evokes  

dynamic what-if capacities of such systems [that] make it possible to display 

immediately the consequences of different approaches to a problem (p. 171).  

We claim that soft construction dynamic geometry task is significantly modified as it offers 

support for generating and testing various conjectures given different hypothetical conditions. 

Dragging plays a crucial role in this exploration. Moreover, students’ exploration of a soft 

construction leads to putting more emphasis on the link between the condition (in our case, M 

is on the circle) and the consequence (the angle AMB is right), which facilitates grasping the 

meaning of a geometric property as an implication, which makes it particularly relevant in proof 

oriented tasks. 

2.4. Redefinition Level Tasks 

Among the tasks that cannot exist but within a dynamic geometry are the so called “black box” 

tasks. Clerc [4] describes a black box in dynamic geometry as a geometric figure made up of 

initial objects and final objects the construction and displacement of which are linked to the 

initial objects. The construction of these final objects is hidden. A mathematical task that can 

be set up with a black box consists in asking the students to solve them, that is to say to find out 

how to construct the final objects from the initial ones, the construction must of course resist 

when the free objects in the figure are dragged. Figure 7 shows a black box where the initial 

objects are three distinct points A, B, and C (or a triangle ABC), and the final objects are points 

X and Y.  

The student is expected to explore the figure, make conjectures, verify them experimentally 

and eventually reconstruct the points X and Y. While dragging, the student can observe for 

example that the point X remains inside the triangle whereas the point Y can get outside (Figure 

7, middle). She can draw lines, circles, midpoints… to enrich the figure; she can measure 

distances or angles (Figure 7, right). Dragging clearly play a critical role in searching for the 
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hidden relationships. It is used both for exploring the figure and verifying conjectured geometric 

properties by highlighting their invariance.     

   

FIGURE 7. A black box task 

CONCLUDING REMARKS 

The purpose of this paper was to show that a given digital educational technology can be used 

in many different ways, ranging from a mere substitute of traditional tools to offering unique 

learning opportunities in novel tasks. Dynamic geometry has been taken as an emblematic 

example and the tasks analyzed have been taken from past research of from available curricular 

resources.  

The various uses of digital technology illustrated on the example of dynamic geometry can 

apply to other tools. Let us consider spreadsheets [12]. At the substitution level, spreadsheet can 

be used as a traditional double entry table, to organize data. The use of formulas and their 

dragging adds a functional improvement to performing calculations (augmentation level). Tasks 

mobilizing spreadsheet functions are deeply modified compared to traditional approaches as 

they require modeling and generalization. Finally, tasks mobilizing advanced functionalities, 

such as conditional formatting, charts or programming macros fall under redefinition level.  

Our analyses highlight that tasks at the transformation levels (modification and redefinition) 

show a greater potential for a student-centered approach, engaging students in inquiry-based 

problem-solving activity, compared to the tasks at the enhancement levels (substitution and 

augmentation), which are rather teacher-centered, requiring less important cognitive activity 

from students.  

Therefore, digital technology itself is not transformative; it is the way how it is used that can 

be transformative. As the teachers’ role in technology-based education is crucial, it is urgent to 

provide them with support aimed at raising their awareness of the manifold uses of technology 

and to help them develop practices at the transformation levels.    
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