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ABSTRACT. The discovery of hyperbolic geometry H
3 by János BOLYAI and Nikolay

Ivanovich LOBACHEVSKY open also new directions in material sciences. Besides of

3-spaces of constant curvature: E3, S3, H3, other five homogeneous 3-spaces: S2×R,

H2 ×R, Nil, S̃L2R, Sol (so-called Thurston geometries) come into considerations.

In analogies of classical crystallography, ball-packing models deserve investigations and

yield interesting new results for comparing with the real crystals, extremal arrangements,

and open problems.
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1. INTRODUCTION

W. Thurston’s results are essential for understanding the geometric structure of our world,

where the eight so-called Thurston geometries play the leading role. The importance of

these geometries is emphasized by Thurston’s famous theorem as follows in Theorem 1.1.

Let (X ;G) be a 3-dimensional homogeneous geometry, where X is a simply connected

Riemannian space with a maximal group G of isometries, acting transitively on X with

compact point stabilizers. G is maximal means that no proper extension of G can act on

the Riemannian space X in the same way. We recall the

Theorem 1.1 (Thurston, [22, 33]). Any 3-dimensional homogeneous geometry

(X ;G) that admits a compact quotient is equivalent (equivariant) to one of the geometries

(X ;G). G = Isom(X) where the space X is one of E3, H3, S3, H2×R, S2×R, Nil,

S̃L2R or Sol.

Therefore, there are eight so-called Thurston geometries, described in [22, 33]. Among

them E3, S3 and H3 are the classical spaces of constant zero, positive and negative curva-

ture, respectively. Further geometries S2×R, H2×R denote the direct product geometries

where S2 is the spherical and H2 is the hyperbolic base plane and the real line R is with

usual metric. Then S̃L2R and Nil are obtained as twisted products of R with H2 and

E2, respectively; and finally Sol geometry is a twisted product of the Minkowski plane

M2 as fibre, with R as base. In each of them there exists an infinitesimal (positive def-

inite) Riemannian metric that is invariant under certain translations, guaranteeing homo-

geneity at every point. These translations in general commute only in E3, but a discrete
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(discontinuous) translation group, taken as a lattice, can be defined with compact funda-

mental domain in analogy to the Euclidean case, but with some different properties. The

additional symmetries can define crystallographic groups, giving nice tilings, packings,

material structures, etc.

We mention here only the sphere (ball) packing problems. In addition to pure mathe-

matical curiosity, the study of sphere packings the generalized Kepler problem is important

because it is possible that under certain conditions (e.g. strong magnetic field) materials

cannot be realized in the usual Euclidean space but in one of the other Thurston geometries.

The structures of substances formed under these conditions may differ from the Euclidean

case and can follow, for example, the geometry of non-constant curvature spaces, and in

these new geometries their atoms can be modelled by H2×R, S2×R, Nil, S̃L2R or Sol

spheres. For example, in Nil geometry we can define lattices and corresponding lattice-

like ball packings where we found geodesic ball packings with kissing number 14 that is

denser than the densest Euclidean case (see [11], [23]). (The density is ≈ 0.78085).

A unified approach to Thurston geometries enabling the investigations in this direction

were made possible by the paper of E. Molnár [7] where he showed that the Thurston

geometries can be uniformly modelled in the projective 3-space P3, or in the projective

3-sphere PS3. This projective spherical model is based on linear algebra over the real

vector space V4 (for points) and its dual V 4 (for planes), up to a positive real factor, so

that the proper dimension is indeed three. A plane → point polarity or scalar product (by

specified signature) induces the invariant metric in a unified way. In our work we will use

these projective models of Thurston geometries (Table 1).

The constant curvature geometries E3, H3, S3 have been extensively studied from the

point of view of elementary geometry, differential geometry and topology. In this article we

focus on results obtained in the other five Thurston geometries H2×R, S2×R, Nil, S̃L2R,

Sol. These spaces have been investigated from the perspective of differential geometry and

topology but few results are stated in connection with their internal structure in the classical

sense. Hence, in this survey we focus on non-constant curvature Thurston geometries and

we emphasize some surprising facts.

We review the concepts of sphere (ball) packings and their densities and the correspond-

ing results so far.

Furthermore, we emphasize the results related to the projective models of the considered

geometries. In our opinion, these models are suitable for the elementary examination and

visualization of the above geometries as well.

Remark 1.2. There is another way of defining distance using the concept of so-called trans-

lational distance. We introduced this concept in paper [13], but in this survey we summa-

rize the results related to the concept of geodesic distance. Note that translation distance

and geodesic distance are the same in the Euclidean geometry E3, Bolyai–Lobachevsky

hyperbolic geometry H3, spherical S2×R and H2×R spaces, but give different values in

Nil, Sol and S̃L2R geometries (see [20, 30]).

As the reader will see, the above results and their visualizations will open a new window

towards other (geometric) worlds [35].
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Table 1

The eight Thurston geometries modelled in PS3 by a polarity

or scalar product and its isometry group.

Signature of The group G = IsomX as

Space polarity Π(⋆) Domain of proper points a special collineation

X or scalar prod- of X in PS3 (V4(R), V 4) group of PS3

uct 〈 , 〉 in V 4

S
3 (+ + ++) PS3 Coll PS3 preserving Π(⋆)

H3 (− + ++) {(x) ∈ P3 : 〈x,x〉 < 0} Coll P3 preserving Π(⋆)

(− − ++) Universal covering of H := Coll PS3 preserving Π(⋆)

S̃L2R with skew := {[x] ∈ PS3 : 〈x,x〉 < 0} and fibres with 4 parameters.

line fibering by fibering transformations

E3 (0 + ++) A3 = P3 \ {ω∞} where Coll P3 preserving Π(⋆),

ω∞ := (b0), b
0
⋆
= 0 generated by plane reflections

(0 + ++) G is generated by plane reflec-

S2×R with O-line A3 \ {O} tions and sphere inversions,

bundle O is a fixed origin leaving invariant the O-

fibering concentric 2-spheres of Π(⋆)

(0 − ++) G is generated by plane reflec-

with O-line C+ = {X ∈ A3 : tions and hyperboloid inver-

H
2×R bundle 〈

−−→
OX,

−−→
OX〉 < 0, half cone} sions, leaving invariant the

fibering by fibering O-concentric half-hyperboloids

in the half-cone C+ by Π(⋆)

(0 − ++) A3 = P3 \ φ Coll. of A3 preserving

Sol and parallel Π(∗) and the

plane fibering fibering with 3 parameters

with an ideal plane φ

Null-polarity Π(⋆) A3 = P3 \ φ Coll. of A3 preserving

Nil with parallel Π(⋆) with

line bundle fibering 4 parameters

F with its polar

ideal plane φ

2. BALL PACKINGS IN THURSTON GEOMETRIES

2.1. Geodesic ball packings in spaces of constant curvature. Let X denote a space of

constant curvature, either the n-dimensional sphere Sn, Euclidean space En, or hyperbolic

space Hn with n ≥ 2. An important question of discrete geometry is to find the highest

possible packing density in X by congruent non-overlapping balls of a given radius [4].
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FIGURE 1. No pictures of János BOLYAI exist. Recently,the opinion

that one of the reliefs of the Palace of Culture at Marosvásárhely (Târgu

Mureş, Romania) portrays him (also with his name, near father’s relief)

has gained acceptance. Moreover, there is a striking similarity between

the relief and the portrait of György Klapka, a general of the Hungarian

revolutionary army of 1848-49. It is known that János resembled György

Klapka. This is the most accepted picture of János BOLYAI, published

by Tibor Weszely, Természet Világa 2018. jun. 262-264.

Euclidean cases are the best explored. One major recent development has been the

settling of the long-standing Kepler conjecture, part of Hilbert’s 18th problem, by Thomas

Hales at the turn of the 21st century. Hales’ computer-assisted proof was largely based on

a program set forth by L. Fejes Tóth in the 1950’s.

In n-dimensional hyperbolic geometry several new questions occur concerning packing

and covering problems, e.g., in Hn there are 3 kinds of “generalized balls (spheres)”: the

usual balls (spheres), horoballs (horospheres) and hyperballs (hyperspheres [31], [32]).

Moreover, the definition of packing density is crucial in hyperbolic spaces as shown by

Böröczky [1]. For standard examples also see [4], [5]. The most widely accepted notion

of packing density considers the local densities of balls with respect to their Dirichlet–

Voronoi cells (cf. [1]). In order to consider ball packings in H
n

, we use an extended

notion of such local density. In space Xn let dn(r) be the density of n + 1 mutually
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touching spheres or horospheres of radius r (in case of horosphere r = ∞) with respect

to the simplex spanned by their centres. L. Fejes Tóth and H. S. M. Coxeter conjectured

that the packing density of balls of radius r in Xn cannot exceed dn(r). This conjecture

has been proved by C. A. Rogers for the Euclidean space En. The 2-dimensional spherical

case was settled by L. Fejes Tóth in [5].

In [1] K. Böröczky claimed the following theorem for ball and horoball packings for

any dimension 2 ≤ n ∈ N:

In an n-dimensional space of constant curvature, consider a packing of spheres of ra-

dius r. In spherical space suppose that r < π
4 . Then the density of each sphere in its

Dirichlet–Voronoi cell cannot exceed the density of n + 1 spheres of radius r mutually

touching one another with respect to the simplex spanned by their centres.

This density is ≈ 0.85328 in H3 which is not realized by packings with equal balls.

However, it is attained by the horoball packing (case r = ∞) of H
3

where the ideal centres

of horoballs lie on the absolute figure of H
3
. This corresponds to packing an ideal regular

tetrahedron tiling given by the Coxeter–Schläfli symbol {3, 3, 6}. But {3, 4, 6} with cubes

of ideal vertices leads to the same density of horoball packing. Ball packings of hyperbolic

n-space and of other Thurston geometries are extensively discussed in the literature see

e.g. [4, 12, 31, 32], where the reader finds further references as well.

In this survey, we do not deal in details with the ball (sphere) packings and coverings of

spaces of constant curvature, so now we only mention that the questions regarding horo-

sphere and hypersphere packings and coverings are not yet settled. Moreover, the famous

football manifold [12] provides the densest known (classical) ball packing configuration

of density ≈ 0.77147, with parameters (u, v, w) = (5; 3; 5) in H3 (see Fig. 2). An infinite

series of hyperbolic space groups is described in [12] and [9] with possible packings and

subgroups with manifold structures. New interesting problems have also arosen, which are

related to the Busemann functions. The interested reader can read about the results of these

in the papers [2, 6] and the references therein.

2.2. Geodesic ball packings in Thurston geometries of non-constant curvature. Defi-

nitions of ball (sphere) packing and covering densities are already critical in hyperbolic ge-

ometry, therefore in order to introduce this concept to Thurston geometries of non-constant

curvature we use the discrete isometry groups of them. First, we have summarized the basic

definitions and notions (see [24]).

Let X be one of the five Thurston geometries of non-constant curvature

S2×R, H2×R, S̃L2R, Nil, Sol,

where the geodesic curves are generally defined as having locally minimal arc length be-

tween any two of their points (sufficiently close to each other). The system of equations for

the parametrized geodesic curves γ(τ) in our model can be determined by the general the-

ory of Riemannian geometry. Then a geodesic sphere and ball can usually be defined. We

consider only geodesic ball packings which are generated by discrete groups of isometries

of X and the density of the packing is related to its Dirichlet–Voronoi cells.

In the following, let Γ be a fixed group of isometries of X . Denote by d(P1, P2) the

geodesic distance of two points P1, P2.

Definition 2.1. We say that the point set

D(K) = {P ∈ X : d(K,P ) ≤ d(Kg, P ) for all g ∈ Γ}

is the Dirichlet–Voronoi cell (D − V cell) of Γ around the kernel point K ∈ X .
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FIGURE 2. Football manifold with its fundamental domain with paired

faces, described in the Beltrami-Cayley-Klein model of H3. A probable

model for fullerenes [16].

2.2.1. Simply transitive ball packings. Let Γ be a fixed group of isometries in the space

X . Our goal is to find a point K ∈ X and the orbit KΓ for Γ such that ΓK = I and the

density δ(K) of the corresponding ball packing BΓ(K) is maximal. In this case the ball

packing BΓ(K) is said to be optimal.

We have to determine the maximal radius ρ(K) of the balls, and the maximal density

δ(K). The space groups considered could have free parameters. So we have to find the

densest ball packing for fixed parameters p(Γ), and then we have to vary p(Γ) to get the

optimal ball packing

(2.1) δ(Γ) = max
K, p(Γ)

(δ(K)).

We look for the optimal kernel point in a 3-dimensional region, contained in a fundamental

domain of Γ.

2.2.2. Multiply transitive ball packings. Similarly to the simply transitive case we must

find a kernel point K ∈ X and the orbit KΓ of Γ such that the density δ(K) of the
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FIGURE 3. The fundamental domain of our analogous tube manifold

Cw(6) in H3, from among the tube manifolds Cw(2p) with face pairing

of p-rotation symmetry [16].

corresponding ball packing BΓ(K) is maximal, but here ΓK 6= I. Such a ball packing

BΓ(K) is also called optimal. In this multiply transitive case we look for the optimal

kernel point K in possible 0-, 1-, or 2-dimensional regions L, respectively.

3. GEODESIC BALL PACKINGS IN Nil

W. Heisenberg’s famous real matrix group (see e.g. [18]) provides a non-commutative

translation group of an affine 3-space. Nil geometry can be derived from this matrix

group.

In [8, 23] we investigated the geodesic balls of Nil and computed their volume, intro-

duced the notion of the Nil lattice, Nil parallelepiped and the density of the lattice-like ball

packing. Moreover, we have determined the densest lattice-like geodesic ball packing by a

family of Nil lattices. The density of this packing is ≈ 0.78085, which may be surprising

enough in comparison with the 3-dimensional analogous Euclidean result π
√

18
≈ 0.74048.

The kissing number of every ball in this packing is 14 (Fig. 4, 5). We conjecture that in

Nil space the densest geodesic ball packing belongs to the above ball arrangement. The

symmetry group of this packing has also been described in [10, 11].

4. GEODESIC BALL PACKINGS IN H2×R

This space is derived from the direct product of the hyperbolic planeH2 and the real lineR.

In [29] we determined the geodesic balls of H2×R and computed their volume, defined

the notion of the geodesic ball packing and its density. Moreover, we have developed a

procedure [29] to determine the density of the simply or multiply transitive geodesic ball

packings for generalized Coxeter space groups of H2×R and applied this algorithm to

them. For the above space groups the Dirichlet–Voronoi cells are “prisms” in the H2×R

sense. The optimal packing density of the generalized Coxeter space groups is ≈ 0.60726.

We are sure, that in this space there are denser ball packings. The problem is open yet.
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FIGURE 4. The densest geodesic lattice-like geodesic ball packing in

Nil space.

FIGURE 5. The densest geodesic lattice-like geodesic ball packing in

Nil space and the corresponding Dirichlet–Voronoi cell.

5. GEODESIC BALL (SPHERE) PACKINGS IN S̃L2R SPACE

In [25] we investigated the regular prisms and prism tilings in S̃L2R and in [15] we con-

sidered the problem of geodesic ball packings related to tilings and their symmetry groups

pq21. Moreover, we computed the volumes of prisms and defined the notion of geodesic

ball packing and its density. In [15] we developed a procedure to determine the densities of

the densest geodesic ball packings for the tilings considered, more precisely, for their gen-

erating groups pq21 (for integer rotational parameters p, q; 3 ≤ p, 2p
p−2 < q). We looked

for those parameters p and q above, where the packing density as largest as possible. In

these cases our record is 0.5674 for (p, q) = (8, 10). In [26] we studied the non-periodic
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geodesic ball packings related to the prism tilings and of the cases examined, the highest

density that occurs is ≈ 0.6266.

In [20] we considered tilings T (p, (q, k), (o, ℓ)) for suitable integer positive parameters

p, q, k, o, ℓ. Every tiling T is generated by discrete isometry grouppqkoℓ for k = 1, o = 2,

ℓ = 1. That means this group is generated by a p−rotation p about the central fibre, then

by qk screw with q−rotation and k
q

translation, then by an oℓ screw with o−rotation and ℓ
o

translation, just by Euclidean analogy but exact projective computations. We computed the

maximal density of the ball packings induced by the pqkoℓ group action for any parame-

ters. In the next Table 2 we have summarized some numerical results with the top density

≈ 0.787758. The table contain the optimal radius ρopt, the volume of the ball B(ρopt), the

volume of the prism Pp, and the packing density δ(ρopt) that is the ratio of the preceding

volumes.

TABLE 1. Geodesic ball packings above in S̃L2R for pqkoℓ with k =
1, o = 2, ℓ = 1.

q p ρopt vol(B(ρopt)) vol(Pp) δ(ρopt)

3 8 0.392699 0.266949 0.411234 0.635408
3 9 0.521044 0.647905 0.822467 0.787758

3 10 0.599849 1.017248 1.315947 0.773016

4 5 0.314159 0.134202 0.246740 0.543899
4 6 0.501354 0.573426 0.822467 0.697203
4 7 0.613204 1.092403 1.586186 0.688698

5 4 0.261799 0.076892 0.164493 0.467450
5 5 0.485013 0.516444 0.822467 0.627920
5 6 0.614925 1.102375 1.754596 0.628278

6. GEODESIC BALL PACKINGS IN S2×R SPACE

The structure and the model of S2×R geometry are described here. We briefly show the

discrete isometry groups of the S2×R geometry.

The points in the S2×R geometry are described by (P, p) where P ∈ S2 and p ∈ R.

The isometry group Isom(S2×R) of S2×R can be derived from the direct product of

the isometry group of the spherical plane Isom(S2) and the isometry group of the real

line Isom(R). The structure of an isometry group Γ ⊂ Isom(S2×R) is the following:

Γ = {(A1 × ρ1), . . . (An × ρn)}, where Ai × ρi := Ai × (Ri, ri) := (gi, ri), (i ∈
{1, 2, . . . n}) and Ai ∈ Isom(S2), Ri is either the identity map 1R of R or the point

reflection 1R. gi := Ai × Ri is called the linear part of the transformation (Ai × ρi) and

ri is its translation part. The multiplication formula is the following:

(8.1) (A1 ×R1, r1) ◦ (A2 ×R2, r2) = (A1A2 ×R1R2, r1R2 + r2).

A group of isometries Γ ⊂ Isom(S2×R) is called space group if the linear parts form a

finite group Γ0 called the point group of Γ. Moreover, the translation components of the

identity of this point group are required to form a one-dimensional lattice LΓ of R.

In [3] J. Z. Farkas classified and gave the complete list of the space groups in S2×R.
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In [27] we have studied the geodesic balls and their volumes in S2×R, moreover intro-

duced the notion of geodesic ball packing and its density.

In this survey we only recall the top results in the next subsection 6.1 from [24] where we

studied the class of S2×R space groups 4q. I. 2 (with a natural parameter q ≥ 2, see [3]).

Each of them belongs to the glide reflection groups, i.e., the generators gi (i = 1, 2, . . .m)
of its point group Γ0 are reflections and at least one of the possible translation components

of the above generators differs from zero (see [28]).

6.1. A very dense multiply transitive ball packing in S2×R geometry. We considered

an S2×R space group (see [3, 27] with point group Γ0 generated by three reflections

gi (i = 1, 2, 3)

(+, 0, [ ] {(2, 2, q)}), q ≥ 2,

Γ0 = (g1,g2,g3 − g2
1,g

2
2,g

2
3, (g1g3)

2, (g2g3)
2, (g1g2)

q).

The possible translation parts τ1, τ2, τ3 of the corresponding generators of Γ0 are derived

from the so-called Frobenius congruence relations:

(τ1, τ2, τ3) ∼= (0, 0, 0),
(

0, 0,
1

2

)

,
(1

2
,
1

2
,
1

2

)

,
(1

2
,
1

2
, 0
)

,
(

0,
1

2
, 0
)

,
(

0,
1

2
,
1

2

)

.

If (τ1, τ2, τ3) ∼= (0, 0, 12 ) then we have obtained the S2×R space group 4q. I. 2 (for a

fixed q, 2 ≤ q ∈ N).

The fundamental domain of the point group of the space group considered is a spherical

triangle A1A2A3 with angles π
q

, π
2 , π

2 in the base plane. It can be assumed that the fibre

coordinate of the centre of the optimal ball is zero and it is a point of the triangle A1A2A3.

We consider ball packings related to parameter q = 2.

In case K = A3

Fig. 6 shows the orbit of the point K = A3 (also K3) by the space group considered.

The images of K lie on a line through the origin and A3.

(2.12)
φ3 =

π

4
≈ 0.78539816, θ3 =

π

2
≈ 1.57079633, R3 ≈ 1.81379936,

V ol(B(R3)) ≈ 20.00238509, δ(R3,K3) ≈ 0.87757183.

The ”outwardly transformed” images of the balls surround the initial balls (see Fig. 6) thus

the touching number of this packing is 4 (see [24]). Finally, we obtain the following

Theorem 6.1 ([24]). The ball arrangement Bopt(R3,K3) provides the densest multiply

transitive ball packing of S2×R space group 4q. I. 2 (q = 2).

Remark 6.2. 1. To the authors’ best knowledge there are no results for the geodesic

ball packings in Sol geometry at the time of writing.

2. In Nil, S̃L2R and Sol spaces we have studied the so-called translation ball pack-

ings reported in [18, 17, 19, 30, 34] but we did not consider these cases in this

work.

7. THE CONJECTURE FOR THE DENSEST BALL ARRANGEMENT IN THURSTON

GEOMETRIES

We introduced the density function for the geodesic ball packings generated by a discrete

group of isometries in a given Thurston geometry. This density is related to the Dirichlet–

Voronoi cells generated by the centres of balls. For these ball packings we can formulate

the following
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FIGURE 6. a. The orbit of K = A3 by the group Γ = 4q. I. 2 (q = 2
and τ is the translation part of the group ). b. The densest ball packing

is determined by its balls BK , BKτg3 and a part of the sphere BK2τ .

Conjecture 7.1 ([24]). Let B be an arbitrary congruent geodesic ball packing in a Thurston

geometry X (except S3, where the problem is trivial), where B is generated by a discrete

isometry group ofX . The above determined ball arrangement, in S2×R Bopt(R3,K3) with

density δ(R3,K3) ≈ 0.87757183 provides the densest congruent geodesic ball packing for

the Thurston geometries.

The general definition of the density of congruent geodesic ball packings for the Thurston

geometries is not settled yet. However, by our investigation for any “good” definition of

density the following conjecture may be formulated.

Conjecture 7.2 ([24]). The densest congruent geodesic ball packing in the Thurston ge-

ometries is realized by the above ball arrangementBopt(R3,K3) with density δ(R3,K3) ≈
0.87757183.

CONCLUSION

In this paper we mentioned only some classical theorems and problems related to Thurston

spaces, but we hope that from these the reader can appreciate that our projective method is

suitable to study and solve similar problems that represent a huge class of open mathemat-

ical problems. Detailed studies are the objective of ongoing research.
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