BRAHMAGUPTA'S THEOREM AUTOMATIC COMPUTER PROOF

Marek Dvorožňák, Pavel Pech
Pedagogical Faculty, University of South Bohemia
E-mail: dvorom00@pf.jcu.cz, pech@pf.jcu.cz

Abstract

The paper deals with a verification of Brahmagupta's theorem using dynamic geometry system and also with a proof of the theorem by classical way. Main part of the paper deals with a proof of the theorem by method of automatic theorem proving.

Key Words: Brahmagupta's theorem, automatic theorem proving.

1 Introduction

In this paper we will demonstrate how to prove Brahmagupta's theorem by computer. First we will describe and verify the theorem in dynamic geometry system GeoGebra. Further we will show a classical proof of this theorem. Finally we will prove this theorem by method of automatic theorem proving [1]. We will use a program CoCoA for this part.

2 Description of a problem

Theorem. In a cyclic quadrilateral having perpendicular diagonals, a perpendicular to a side from the point of intersection of diagonals always bisects the opposite side.

In a figure above we have a cyclic quadrilateral $A B C D$ that has perpendicular diagonals $A C$ and $B D$. A perpendicular to a side $C D$ goes through the intersection point I of diagonals and has a feet F.

It is good to take a note here that in all another parts of this paper we will prove the theorem only for one side of cyclic quadrilateral. The proof for another sides of cyclic quadrilateral is analogical.

3 Verification in GeoGebra

First we have to construct the figure in GeoGebra. The steps of construction are as follows:

$$
\begin{aligned}
& \text { 1) } k ; k=(S, r) \\
& \text { 2) } A C ; A, C \in k \\
& \text { 3) } B D ; B, D \in k \wedge B D \perp A C \\
& \text { 4) } I ; I \in A C \cap B D \\
& \text { 5) } F I ; F \in C D \wedge F I \perp C D \\
& \text { 6) } M ; M \in A B \wedge|A M|=|M B|
\end{aligned}
$$

In this part we are to show that the midpoint M of side $A B$ of the cyclic quadrilateral $A B C D$ belongs to perpendicular $F I$. In fact that is very easy. The only thing we have to do is to ask GeoGebra to find relation between two objects. In our case that is relation between the midpoint M and perpendicular $F I$. GeoGebra will tell us that the point M lies on the line FI. Thus the verification is done.

(2) GeoGebra - Relation $\equiv x$
(I. Point M lies on Line FI
OK

4 Classical proof

We are to prove that point $M \in F I \cap A B$ is a midpoint of side $A B$ of the cyclic quadrilateral. We can also say that M is a midpoint of side $A B$ if and only if the line $F I$ divides right-angled triangle $\triangle B I A$ onto two isosceles triangles.

From the figure above we can see that

$$
|\measuredangle C A B|=|\measuredangle C D B| .
$$

The equality comes from properties of cyclic quadrilateral exactly from the inscribed angle theorem.

Next we have to realize that perpendicular $F I$ divides triangles $\triangle C F I$ and $\triangle D I F$ onto two similar triangles.

$$
|\measuredangle F I C|=|\measuredangle F D I|=|\measuredangle C D B|
$$

Further we can see that $\measuredangle F I C$ and $\measuredangle M I A$ are vertical angles that are equal in size.

$$
\begin{equation*}
|\measuredangle F I C|=|\measuredangle M I A| \tag{1}
\end{equation*}
$$

As we have said above the triangle $\triangle B I A$ is right-angled. It implies

$$
\begin{equation*}
|\measuredangle A B I|=90-|\measuredangle I A B|=90-|\measuredangle C A B| \text { and }|\measuredangle B I M|=90-|\measuredangle M I A| . \tag{2}
\end{equation*}
$$

Now we can see that (1) and (2) implies

$$
|\measuredangle A B I|=|\measuredangle B I M| .
$$

From above we can see that $\triangle I A M$ and $\triangle B I M$ are isosceles with common arm $M I$. This implies

$$
|A M|=|M I|=|M B|
$$

so point M is a midpoint of side $A B$ of cyclic quadrilateral $A B C D$. Hence the classical proof of Brahmagupta's theorem is done.

5 Automatic proof by computer

5.1 Introduction of a coordinate system

For this proof we will choose Cartesian coordinate system. As we can see from the figure below we denoted by $S=[m, n]$ the center of circle, by $A=[a, 0], B=[0, b], C=$ $[c, 0], D=[0, d]$ the vertices of cyclic quadrilateral, by $I=[0,0]$ the point of intersection of diagonals $A C$ and $B D$ of cyclic quadrilateral, by $F=[e, f]$ the foot of perpendicular $F I$, and finally by $M=\left[\frac{a}{2}, \frac{b}{2}\right]$ the midpoint of side $A B$.

5.2 Algebraic formulation of a problem

First we have to translate geometric properties of objects into algebraic formulations. Like in classical proof we have some hypotheses $\left(h_{1}, \ldots, h_{6}\right)$ and a conclusion (c). We can express that four points belong to a circle with following equations. These equations come from Pythagorian theorem.

$$
\begin{aligned}
& r=|A S| \Leftrightarrow \\
& h_{1}:(a-m)^{2}+n^{2}-r^{2}=0 \\
& r=|B S| \Leftrightarrow
\end{aligned} h_{2}: m^{2}+(b-n)^{2}-r^{2}=0 .
$$

Foot F of perpendicular $F I$ belongs to side $C D$ of cyclic quadrilateral $A B C D$:

$$
F \in C D \quad \Leftrightarrow \quad h_{5}: d e+c f-d c=0
$$

Side $C D$ of cyclic quadrilateral $A B C D$ is perpendicular to line $F I$:

$$
C D \perp F I \quad \Leftrightarrow \quad h_{6}: c e-d f=0
$$

We want to show that midpoint M of side $A B$ belongs to line $F I$. We can express this relation by following equation:

$$
M \in F I \Leftrightarrow c: f a-e b=0
$$

5.3 Proof of a statement

Now we will use computer algebra system CoCoA to do some hard work for us. First we have to tell CoCoA which indeterminates we will use so we enter:

Use $R:=Q[a, b, c, d, e, f, m, n, r, t]$;
We want to find out whether conclusion polynomial c belongs to ideal generated by hypotheses polynomials h_{1}, \ldots, h_{6}. In CoCoA we enter:

```
I:=Ideal((a-m)^2+n^2-r^2, m^2+(b-n)^2-r^2, (c-m)^2+n^2-r^2,
m^2+(d-n)^2-r^2, de+cf-dc, ce-df);
NF(fa-eb, I);
```

We get
-be+af
as a result. If result is not equal to zero then it means that our conclusion polynomial does not belong to ideal I.

We will try a second method, the stronger criterion. We will ask CoCoA whether conclusion polynomial c belongs to a radical of ideal I. All we have to do is to add negation of conclusion to the set of generators of ideal I. Hence we get ideal J and we ask if 1 belongs to ideal J . In CoCoA we enter:

```
J:=Ideal((a-m)^2+n^2-r^2, m^2+(b-n)^2-r^2, (c-m)^2+n^2-r^2,
m^2+(d-n)^2-r^2, de+cf-dc, ce-df, (fa-eb)t-1);
NF(1, J);
```

We get
1
as a result. As in previous case if we get anything other than 0 as a result then it means that our conclusion polynomial is not an element of ideal J. Hence the statement is not generally true. It is necessary to look for additional conditions now.

5.4 Searching for additional conditions

In this step we have to find conditions for which the theorem is not meaningless. These conditions are called non-degeneracy conditions. These conditions are in form of inequations (\neq) and are expressed only by independent indeterminates. To eliminate all dependent indeterminates and a slack variable t in ideal J , in CoCoA we enter:

```
Elim(e..t, J);
```

We get
Ideal (1/4abc - 1/4bc^2-1/4acd + 1/4c^2d,
1/4abd - 1/4bcd - 1/4ad~2 + 1/4cd~2)
as a result. This ideal is called elimination ideal. It is generated by two polynomials in our case. Now we will factor the first polynomial using CoCoA. We enter:

```
Factor(1/4abc - 1/4bc^2 - 1/4acd + 1/4c^2d);
```

We get
$[[c, 1],[b-d, 1],[a-c, 1],[1 / 4,1]]$
as a result. These could be the desired conditions. What do they mean?

$$
\begin{array}{rll}
c \neq 0 & \ldots & \text { If } c=0 \text { then vertices B, C, D would be collinear. } \\
b-d \neq 0 & \ldots & \text { If } b=d \text { then vertices B and D would coincide. } \\
a-c \neq 0 & \ldots & \text { If } a=c \text { then vertices A and C would coincide. }
\end{array}
$$

Finally we have to add these conditions to ideal I. Thus we obtain ideal K and we can find a normal form of our conclusion polynomial c. In CoCoA we enter:

```
K:=Ideal((a-m)^2+n^2-r^2, m^2+(b-n)^2-r^2, (c-m)^2+n^2-r^2,
m^2+(d-n)^2-r^2, de+cf-dc, ce-df, c(b-d)(a-c)t-1);
NF(fa-eb, K);
```

We get
0
as a result. It means that conclusion polynomial c belongs to ideal K. Hence the theorem is generically true and the computer proof is done.

References

[1] Pech, P.: Selected topics in geometry with classical vs. computer proving. World Scientific Publishing, New Jersey London Singapore, (2007).

