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Abstract. The paper deals with a verification of Brahmagupta’s theorem using dynamic
geometry system and also with a proof of the theorem by classical way. Main part of the
paper deals with a proof of the theorem by method of automatic theorem proving.
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1 Introduction
In this paper we will demonstrate how to prove Brahmagupta’s theorem by computer.
First we will describe and verify the theorem in dynamic geometry system GeoGebra.
Further we will show a classical proof of this theorem. Finally we will prove this theorem
by method of automatic theorem proving [1]. We will use a program CoCoA for this part.

2 Description of a problem
Theorem. In a cyclic quadrilateral having perpendicular diagonals, a perpendicular to a
side from the point of intersection of diagonals always bisects the opposite side.



In a figure above we have a cyclic quadrilateral ABCD that has perpendicular diag-
onals AC and BD. A perpendicular to a side CD goes through the intersection point I
of diagonals and has a feet F .

It is good to take a note here that in all another parts of this paper we will prove the
theorem only for one side of cyclic quadrilateral. The proof for another sides of cyclic
quadrilateral is analogical.

3 Verification in GeoGebra
First we have to construct the figure in GeoGebra. The steps of construction are as
follows:

1)k; k = (S, r)

2)AC; A, C ∈ k

3)BD; B, D ∈ k ∧BD⊥AC

4)I; I ∈ AC ∩BD

5)FI; F ∈ CD ∧ FI⊥CD

6)M ; M ∈ AB ∧ |AM | = |MB|

In this part we are to show that the midpoint M of side AB of the cyclic quadrilateral
ABCD belongs to perpendicular FI. In fact that is very easy. The only thing we have to
do is to ask GeoGebra to find relation between two objects. In our case that is relation
between the midpoint M and perpendicular FI. GeoGebra will tell us that the point M
lies on the line FI. Thus the verification is done.

4 Classical proof
We are to prove that point M ∈ FI∩AB is a midpoint of side AB of the cyclic quadrilat-
eral. We can also say that M is a midpoint of side AB if and only if the line FI divides
right-angled triangle M BIA onto two isosceles triangles.



From the figure above we can see that

|]CAB| = |]CDB|.

The equality comes from properties of cyclic quadrilateral exactly from the inscribed angle
theorem.

Next we have to realize that perpendicular FI divides triangles M CFI and M DIF
onto two similar triangles.

|]FIC| = |]FDI| = |]CDB|

Further we can see that ]FIC and ]MIA are vertical angles that are equal in size.

|]FIC| = |]MIA| (1)

As we have said above the triangle M BIA is right-angled. It implies

|]ABI| = 90− |]IAB| = 90− |]CAB| and |]BIM | = 90− |]MIA|. (2)

Now we can see that (1) and (2) implies

|]ABI| = |]BIM |.

From above we can see that M IAM and M BIM are isosceles with common arm MI.
This implies

|AM | = |MI| = |MB|

so point M is a midpoint of side AB of cyclic quadrilateral ABCD. Hence the classical
proof of Brahmagupta’s theorem is done.



5 Automatic proof by computer

5.1 Introduction of a coordinate system

For this proof we will choose Cartesian coordinate system. As we can see from the figure
below we denoted by S = [m, n] the center of circle, by A = [a, 0], B = [0, b], C =
[c, 0], D = [0, d] the vertices of cyclic quadrilateral, by I = [0, 0] the point of intersection
of diagonals AC and BD of cyclic quadrilateral, by F = [e, f ] the foot of perpendicular
FI, and finally by M = [a

2
, b

2
] the midpoint of side AB.

5.2 Algebraic formulation of a problem

First we have to translate geometric properties of objects into algebraic formulations.
Like in classical proof we have some hypotheses (h1, . . . , h6) and a conclusion (c). We
can express that four points belong to a circle with following equations. These equations
come from Pythagorian theorem.

r = |AS| ⇔ h1 : (a−m)2 + n2 − r2 = 0

r = |BS| ⇔ h2 : m2 + (b− n)2 − r2 = 0

r = |CS| ⇔ h3 : (c−m)2 + n2 − r2 = 0

r = |DS| ⇔ h4 : m2 + (d− n)2 − r2 = 0

Foot F of perpendicular FI belongs to side CD of cyclic quadrilateral ABCD:

F ∈ CD ⇔ h5 : de + cf − dc = 0

Side CD of cyclic quadrilateral ABCD is perpendicular to line FI:

CD⊥FI ⇔ h6 : ce− df = 0



We want to show that midpoint M of side AB belongs to line FI. We can express
this relation by following equation:

M ∈ FI ⇔ c : fa− eb = 0

5.3 Proof of a statement

Now we will use computer algebra system CoCoA to do some hard work for us. First we
have to tell CoCoA which indeterminates we will use so we enter:

Use R::=Q[a,b,c,d,e,f,m,n,r,t];

We want to find out whether conclusion polynomial c belongs to ideal generated by
hypotheses polynomials h1, . . . , h6. In CoCoA we enter:

I:=Ideal((a-m)^2+n^2-r^2, m^2+(b-n)^2-r^2, (c-m)^2+n^2-r^2,
m^2+(d-n)^2-r^2, de+cf-dc, ce-df);
NF(fa-eb, I);

We get

-be+af

as a result. If result is not equal to zero then it means that our conclusion polynomial
does not belong to ideal I.

We will try a second method, the stronger criterion. We will ask CoCoA whether
conclusion polynomial c belongs to a radical of ideal I. All we have to do is to add
negation of conclusion to the set of generators of ideal I. Hence we get ideal J and we ask
if 1 belongs to ideal J. In CoCoA we enter:

J:=Ideal((a-m)^2+n^2-r^2, m^2+(b-n)^2-r^2, (c-m)^2+n^2-r^2,
m^2+(d-n)^2-r^2, de+cf-dc, ce-df, (fa-eb)t-1);
NF(1, J);

We get

1

as a result. As in previous case if we get anything other than 0 as a result then it means
that our conclusion polynomial is not an element of ideal J. Hence the statement is not
generally true. It is necessary to look for additional conditions now.



5.4 Searching for additional conditions

In this step we have to find conditions for which the theorem is not meaningless. These
conditions are called non-degeneracy conditions. These conditions are in form of in-
equations ( 6=) and are expressed only by independent indeterminates. To eliminate all
dependent indeterminates and a slack variable t in ideal J, in CoCoA we enter:

Elim(e..t, J);

We get

Ideal(1/4abc - 1/4bc^2 - 1/4acd + 1/4c^2d,
1/4abd - 1/4bcd - 1/4ad^2 + 1/4cd^2)

as a result. This ideal is called elimination ideal. It is generated by two polynomials in
our case. Now we will factor the first polynomial using CoCoA. We enter:

Factor(1/4abc - 1/4bc^2 - 1/4acd + 1/4c^2d);

We get

[[c, 1], [b - d, 1], [a - c, 1], [1/4, 1]]

as a result. These could be the desired conditions. What do they mean?

c 6= 0 . . . If c = 0 then vertices B, C, D would be collinear.
b− d 6= 0 . . . If b = d then vertices B and D would coincide.
a− c 6= 0 . . . If a = c then vertices A and C would coincide.

Finally we have to add these conditions to ideal I. Thus we obtain ideal K and we can
find a normal form of our conclusion polynomial c. In CoCoA we enter:

K:=Ideal((a-m)^2+n^2-r^2, m^2+(b-n)^2-r^2, (c-m)^2+n^2-r^2,
m^2+(d-n)^2-r^2, de+cf-dc, ce-df, c(b-d)(a-c)t-1);
NF(fa-eb, K);

We get

0

as a result. It means that conclusion polynomial c belongs to ideal K. Hence the theorem
is generically true and the computer proof is done.
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